You can see your coupon in the
user page
Go To QuillBot
Upgrade to Pro
Continue to site
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Solutions
Integral Calculator
Derivative Calculator
Algebra Calculator
Matrix Calculator
More...
Graphing
Line Graph Calculator
Exponential Graph Calculator
Quadratic Graph Calculator
Sine Graph Calculator
More...
Calculators
BMI Calculator
Compound Interest Calculator
Percentage Calculator
Acceleration Calculator
More...
Geometry
Pythagorean Theorem Calculator
Circle Area Calculator
Isosceles Triangle Calculator
Triangles Calculator
More...
Tools
Notebook
Groups
Cheat Sheets
Worksheets
Study Guides
Practice
Verify Solution
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Upgrade
×
Symbolab for Chrome
Snip & solve on any website
Add to Chrome
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Calculations
Graphs
Popular Calculus Problems
integral from 1 to 5 of sqrt(5)
\int\:_{1}^{5}\sqrt{5}dx
limit as x approaches 0+of x^3
\lim\:_{x\to\:0+}(x^{3})
inverse oflaplace s/((s+2)(s^2+4))
inverselaplace\:\frac{s}{(s+2)(s^{2}+4)}
integral of (sqrt(x)+\sqrt[3]{x})
\int\:(\sqrt{x}+\sqrt[3]{x})dx
limit as x approaches 2 of x^2-7x+2
\lim\:_{x\to\:2}(x^{2}-7x+2)
tangent of f(x)=3x^3+8x^2,\at x=-2
tangent\:f(x)=3x^{3}+8x^{2},\at\:x=-2
limit as x approaches 5 of 7/(x-5)
\lim\:_{x\to\:5}(\frac{7}{x-5})
limit as x approaches infinity of 7+4/x
\lim\:_{x\to\:\infty\:}(7+\frac{4}{x})
sum from n=1 to infinity of (3n)/(2n+1)
\sum\:_{n=1}^{\infty\:}\frac{3n}{2n+1}
(\partial)/(\partial x)(y/(x^2+y^2+1))
\frac{\partial\:}{\partial\:x}(\frac{y}{x^{2}+y^{2}+1})
(\partial)/(\partial v)(u^2)
\frac{\partial\:}{\partial\:v}(u^{2})
(\partial)/(\partial x)(y+x^2)
\frac{\partial\:}{\partial\:x}(y+x^{2})
xy^'+2y=-4x
xy^{\prime\:}+2y=-4x
derivative of (x^3^5)
\frac{d}{dx}((x^{3})^{5})
sum from n=0 to infinity of 1+1/n
\sum\:_{n=0}^{\infty\:}1+\frac{1}{n}
y^'-y/x =x
y^{\prime\:}-\frac{y}{x}=x
derivative of-5e^{-x}
\frac{d}{dx}(-5e^{-x})
integral of 1/(sqrt(8x+1))
\int\:\frac{1}{\sqrt{8x+1}}dx
integral of (5x^2-x-3)/(x^2(x+1))
\int\:\frac{5x^{2}-x-3}{x^{2}(x+1)}dx
integral of ((cos(2x)-1))/(cos(2x)+1)
\int\:\frac{(\cos(2x)-1)}{\cos(2x)+1}dx
integral of xy
\int\:xydx
slope of (7,-7),(5,-3)
slope\:(7,-7),(5,-3)
limit as h approaches 0 of ((cos(x+h)-cos(x)))/h
\lim\:_{h\to\:0}(\frac{(\cos(x+h)-\cos(x))}{h})
sum from n=0 to infinity of 3x^{2n+1}
\sum\:_{n=0}^{\infty\:}3x^{2n+1}
y^'=(e^x-e^{-x})/(3+4y)
y^{\prime\:}=\frac{e^{x}-e^{-x}}{3+4y}
integral of e^{-αx}
\int\:e^{-αx}dx
ty^'+4y=t^2-t+7
ty^{\prime\:}+4y=t^{2}-t+7
laplacetransform t^2sin^2(t)
laplacetransform\:t^{2}\sin^{2}(t)
(d^2)/(dx^2)(sin(3x))
\frac{d^{2}}{dx^{2}}(\sin(3x))
integral of 3sin^3(xco)s^7x
\int\:3\sin^{3}(xco)s^{7}xdx
limit as x approaches 3-of x/(x^2-9)
\lim\:_{x\to\:3-}(\frac{x}{x^{2}-9})
derivative of (2-x(y-2)(3-x-y))
\frac{d}{dx}((2-x)(y-2)(3-x-y))
limit as x approaches infinity of x/8
\lim\:_{x\to\:\infty\:}(\frac{x}{8})
limit as x approaches 0+of (x^2)/3-3/x
\lim\:_{x\to\:0+}(\frac{x^{2}}{3}-\frac{3}{x})
(\partial)/(\partial x)(xe^{2x})
\frac{\partial\:}{\partial\:x}(xe^{2x})
(\partial)/(\partial x)(4x^3y^3-3)
\frac{\partial\:}{\partial\:x}(4x^{3}y^{3}-3)
tangent of y=(e^{-x})/(x+1),\at x=1
tangent\:y=\frac{e^{-x}}{x+1},\at\:x=1
implicit (dy)/(dx),y=e^x
implicit\:\frac{dy}{dx},y=e^{x}
(dy)/(dt)-(2t)/(1+t^2)y=3
\frac{dy}{dt}-\frac{2t}{1+t^{2}}y=3
derivative of tan^2(y)
derivative\:\tan^{2}(y)
(\partial)/(\partial x)(2x^3+3y^2-5xy)
\frac{\partial\:}{\partial\:x}(2x^{3}+3y^{2}-5xy)
integral of (2x)/((x-1)^2)
\int\:\frac{2x}{(x-1)^{2}}dx
integral from-pi to pi of sin^{101}(x)
\int\:_{-π}^{π}\sin^{101}(x)dx
derivative of sec(5x+2)
\frac{d}{dx}(\sec(5x+2))
(\partial)/(\partial x)(e^{x^2+y^2+2y+5})
\frac{\partial\:}{\partial\:x}(e^{x^{2}+y^{2}+2y+5})
limit as x approaches 0 of x^2-8x+9
\lim\:_{x\to\:0}(x^{2}-8x+9)
laplacetransform e^6
laplacetransform\:e^{6}
integral from 7 to infinity of 2/(x^3)
\int\:_{7}^{\infty\:}\frac{2}{x^{3}}dx
derivative of 8-2/3 x
\frac{d}{dx}(8-\frac{2}{3}x)
y^'-((2x)/(1+x^2))y=1
y^{\prime\:}-(\frac{2x}{1+x^{2}})y=1
integral of x^{4n+2}
\int\:x^{4n+2}dx
(x-3)e^{(-2y)}=(dy)/(dx)
(x-3)e^{(-2y)}=\frac{dy}{dx}
derivative of f(x)=ln(sqrt(x(1-x)))
derivative\:f(x)=\ln(\sqrt{x(1-x)})
integral of 1/(x(x^4-1))
\int\:\frac{1}{x(x^{4}-1)}dx
derivative of (sqrt(7))/(x^6)
derivative\:\frac{\sqrt{7}}{x^{6}}
3(1+x^2)(dy)/(dx)=2xy^4
3(1+x^{2})\frac{dy}{dx}=2xy^{4}
integral of 1/(sqrt(4-9x^2))
\int\:\frac{1}{\sqrt{4-9x^{2}}}dx
limit as x approaches 3 of 6-2x
\lim\:_{x\to\:3}(6-2x)
limit as x approaches i of x^2+2x
\lim\:_{x\to\:i}(x^{2}+2x)
integral of (sqrt(1-\sqrt{x)})/(sqrt(x))
\int\:\frac{\sqrt{1-\sqrt{x}}}{\sqrt{x}}dx
integral of-(2xy)/((x^2+y^2)^2)
\int\:-\frac{2xy}{(x^{2}+y^{2})^{2}}dy
derivative of x+ln|x^2-4x+3|
\frac{d}{dx}(x+\ln\left|x^{2}-4x+3\right|)
derivative of cos((sqrt(3))/2 x)
derivative\:\cos(\frac{\sqrt{3}}{2}x)
derivative of ln(sqrt(x^2+19))
\frac{d}{dx}(\ln(\sqrt{x^{2}+19}))
tangent of f(x)=sqrt(5x+6),\at a=2
tangent\:f(x)=\sqrt{5x+6},\at\:a=2
2x^2-80x+y^2+49=0(0)
2x^{2}-80x+y^{2}+49=0(0)
integral from 1 to 2 of 4-x^2
\int\:_{1}^{2}4-x^{2}dx
limit as (x,x^5) approaches (0,0) of (x^5y)/(x^{10)+y^5}
\lim\:_{(x,x^{5})\to\:(0,0)}(\frac{x^{5}y}{x^{10}+y^{5}})
limit as x approaches 2-of (6x)/(x-2)
\lim\:_{x\to\:2-}(\frac{6x}{x-2})
integral of (ke^{-kx})
\int\:(ke^{-kx})dx
y^'+3(tan(3x))y=cos(3x)
y^{\prime\:}+3(\tan(3x))y=\cos(3x)
integral of (2x-3)e^{x^2-3x}
\int\:(2x-3)e^{x^{2}-3x}dx
(\partial)/(\partial x)(x^5y)
\frac{\partial\:}{\partial\:x}(x^{5}y)
integral of (4x^2+2x+8)/(x(x^2+2)^2)
\int\:\frac{4x^{2}+2x+8}{x(x^{2}+2)^{2}}dx
limit as x approaches+1 of-3/(x-1)
\lim\:_{x\to\:+1}(-\frac{3}{x-1})
y^'=2y+xe^x,y(0)=-1
y^{\prime\:}=2y+xe^{x},y(0)=-1
(\partial)/(\partial y)(xy+ln(x+y))
\frac{\partial\:}{\partial\:y}(xy+\ln(x+y))
maclaurin cos(pix)
maclaurin\:\cos(πx)
(dy)/(dx)+ycos(x)=3cos(x),y(0)=5
\frac{dy}{dx}+y\cos(x)=3\cos(x),y(0)=5
area y=4x-x^2,y=x
area\:y=4x-x^{2},y=x
(dx)/(dt)+8x=0
\frac{dx}{dt}+8x=0
derivative of 4x(sin(x+cos(x)))
\frac{d}{dx}(4x(\sin(x)+\cos(x)))
(dy)/(dx)=(x-1)/(y^3)
\frac{dy}{dx}=\frac{x-1}{y^{3}}
integral of ((ln(x))^{32})/x
\int\:\frac{(\ln(x))^{32}}{x}dx
limit as x approaches 2 of 2x^4-10
\lim\:_{x\to\:2}(2x^{4}-10)
(d^2)/(dx^2)(ln(x^2+3x+15))
\frac{d^{2}}{dx^{2}}(\ln(x^{2}+3x+15))
f(x)=8ln(x)
f(x)=8\ln(x)
limit as x approaches 1 of 3x^2-7x+1
\lim\:_{x\to\:1}(3x^{2}-7x+1)
derivative of x^3-6x^2+8x
\frac{d}{dx}(x^{3}-6x^{2}+8x)
integral of (7x^2)ex^3+1
\int\:(7x^{2})ex^{3}+1dx
f(x)=-4sin(4x)
f(x)=-4\sin(4x)
tangent of y=x+6/x ,(3,5)
tangent\:y=x+\frac{6}{x},(3,5)
81y^{''}+180y^'+125y=0,y(3)=6,y^'(3)=6
81y^{\prime\:\prime\:}+180y^{\prime\:}+125y=0,y(3)=6,y^{\prime\:}(3)=6
derivative of 8cos^2(x)
\frac{d}{dx}(8\cos^{2}(x))
area 2x^3-6x^2-2x+6,-x^3+3x^2+x-3
area\:2x^{3}-6x^{2}-2x+6,-x^{3}+3x^{2}+x-3
integral from 0 to 4 of pi((20-5x)/4)^2
\int\:_{0}^{4}π(\frac{20-5x}{4})^{2}dx
derivative of y=4x^2+1
derivative\:y=4x^{2}+1
integral of 2x^3e^{x^2}
\int\:2x^{3}e^{x^{2}}dx
integral of (1/(2sqrt(x)))
\int\:(\frac{1}{2\sqrt{x}})dx
area y=sqrt(3x),x=0,x=4
area\:y=\sqrt{3x},x=0,x=4
1
..
252
253
254
255
256
..
1823