You can see your coupon in the
user page
Go To QuillBot
Upgrade to Pro
Continue to site
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Solutions
Integral Calculator
Derivative Calculator
Algebra Calculator
Matrix Calculator
More...
Graphing
Line Graph Calculator
Exponential Graph Calculator
Quadratic Graph Calculator
Sine Graph Calculator
More...
Calculators
BMI Calculator
Compound Interest Calculator
Percentage Calculator
Acceleration Calculator
More...
Geometry
Pythagorean Theorem Calculator
Circle Area Calculator
Isosceles Triangle Calculator
Triangles Calculator
More...
Tools
Notebook
Groups
Cheat Sheets
Worksheets
Study Guides
Practice
Verify Solution
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Upgrade
×
Symbolab for Chrome
Snip & solve on any website
Add to Chrome
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Calculations
Graphs
Popular Calculus Problems
integral of e^{-x}cos(x)
\int\:e^{-x}\cos(x)dx
derivative of ax^2+b
\frac{d}{dx}(ax^{2}+b)
derivative of 4xln(7x-4x)
\frac{d}{dx}(4x\ln(7x)-4x)
integral of-(sec^2(x)-1)/(tan(x))
\int\:-\frac{\sec^{2}(x)-1}{\tan(x)}dx
inverse oflaplace (s+3)/(s^2+s+1)
inverselaplace\:\frac{s+3}{s^{2}+s+1}
derivative of (1/(x^2-5/(x^4))(x+9x^3))
\frac{d}{dx}((\frac{1}{x^{2}}-\frac{5}{x^{4}})(x+9x^{3}))
limit as x approaches 0+of ((3))/(x^2-x)
\lim\:_{x\to\:0+}(\frac{(3)}{x^{2}-x})
integral from 0 to 8 of x/((x+8)^3)
\int\:_{0}^{8}\frac{x}{(x+8)^{3}}dx
derivative of (3x^2-5xe^x)
\frac{d}{dx}((3x^{2}-5x)e^{x})
integral of x/(x-1)
\int\:\frac{x}{x-1}dx
derivative of y=(e^x)/(5x^2)
derivative\:y=\frac{e^{x}}{5x^{2}}
derivative of (2x+3^{1.4})
\frac{d}{dx}((2x+3)^{1.4})
(\partial)/(\partial x)(x+y^{1/2})
\frac{\partial\:}{\partial\:x}(x+y^{\frac{1}{2}})
limit as x approaches 0 of tan(7x)
\lim\:_{x\to\:0}(\tan(7x))
y^'=y^2e^{2x}
y^{\prime\:}=y^{2}e^{2x}
derivative of ln((2+x)/(1+x))
derivative\:\ln(\frac{2+x}{1+x})
(dy)/(dt)=sqrt(t)+t^2
\frac{dy}{dt}=\sqrt{t}+t^{2}
derivative of-x/(sqrt(1+x^2))
\frac{d}{dx}(-\frac{x}{\sqrt{1+x^{2}}})
integral of sqrt(13-x^2)
\int\:\sqrt{13-x^{2}}dx
(\partial)/(\partial z)(2ysin(x)+e^{2z})
\frac{\partial\:}{\partial\:z}(2y\sin(x)+e^{2z})
integral from 1/5 to 3 of 14xln(5x)
\int\:_{\frac{1}{5}}^{3}14x\ln(5x)dx
derivative of y=x^5ln(x)
derivative\:y=x^{5}\ln(x)
limit as x approaches 0 of (28^x-1)/x
\lim\:_{x\to\:0}(\frac{28^{x}-1}{x})
derivative of (arcsin(5x+5))^8
derivative\:(\arcsin(5x+5))^{8}
limit as x approaches-2 of (x+4)^3
\lim\:_{x\to\:-2}((x+4)^{3})
derivative of 30x^4-80x^3+60x^2-10
\frac{d}{dx}(30x^{4}-80x^{3}+60x^{2}-10)
derivative of 3x-4x^{7/8}
\frac{d}{dx}(3x-4x^{\frac{7}{8}})
limit as x approaches 0 of ((4e^x-4))/x
\lim\:_{x\to\:0}(\frac{(4e^{x}-4)}{x})
derivative of sin(2x^2*e^{-x})
\frac{d}{dx}(\sin(2x^{2}\cdot\:e^{-x}))
tangent of f(x)=(x-2)(2x+3),\at x=0
tangent\:f(x)=(x-2)(2x+3),\at\:x=0
integral of (x-5)*sin(x)
\int\:(x-5)\cdot\:\sin(x)dx
integral of (sin(x)tan(x))/(9+sec^2(x))
\int\:\frac{\sin(x)\tan(x)}{9+\sec^{2}(x)}dx
t^2y^{''}+21ty^'+100y=0
t^{2}y^{\prime\:\prime\:}+21ty^{\prime\:}+100y=0
limit as x approaches 2 of 5a+ax
\lim\:_{x\to\:2}(5a+ax)
(dy)/(dx)=(2-e^x)/(3+2y)
\frac{dy}{dx}=\frac{2-e^{x}}{3+2y}
derivative of (8x+7)^2
derivative\:(8x+7)^{2}
sum from n=1 to infinity of (ln(n))/(8n)
\sum\:_{n=1}^{\infty\:}\frac{\ln(n)}{8n}
integral of x^2sqrt(x^3+8)
\int\:x^{2}\sqrt{x^{3}+8}dx
derivative of x^3-12x^2+45x+9
\frac{d}{dx}(x^{3}-12x^{2}+45x+9)
limit as x approaches 2 of 7/(x-2)
\lim\:_{x\to\:2}(\frac{7}{x-2})
simplify 4/5 x^{5/4}
simplify\:\frac{4}{5}x^{\frac{5}{4}}
(\partial)/(\partial y)(-2y^4sin(2x))
\frac{\partial\:}{\partial\:y}(-2y^{4}\sin(2x))
integral from 1 to 2 of (x^2+2)/(3x-x^2)
\int\:_{1}^{2}\frac{x^{2}+2}{3x-x^{2}}dx
derivative of-2x^2-4x+1
derivative\:-2x^{2}-4x+1
((10)/x)^'
(\frac{10}{x})^{\prime\:}
limit as x approaches 8-of (x-8)/(x-8)
\lim\:_{x\to\:8-}(\frac{x-8}{x-8})
limit as x approaches 12 of (x-12)/(x^2-144)
\lim\:_{x\to\:12}(\frac{x-12}{x^{2}-144})
inverse oflaplace s/(s^2+8s+25)
inverselaplace\:\frac{s}{s^{2}+8s+25}
tangent of y=(2x+3)/(3x-2),(1,5)
tangent\:y=\frac{2x+3}{3x-2},(1,5)
tangent of f(x)=(x-3)/(6x-1),\at x=1
tangent\:f(x)=\frac{x-3}{6x-1},\at\:x=1
y^{''}+4y^'+4y=12te^{-2t}+4t
y^{\prime\:\prime\:}+4y^{\prime\:}+4y=12te^{-2t}+4t
tangent of (x+2)^2+(y-3)^2=37,(-1,9)
tangent\:(x+2)^{2}+(y-3)^{2}=37,(-1,9)
integral of tan(4x)sec^2(4x)
\int\:\tan(4x)\sec^{2}(4x)dx
derivative of x^2-e^{y^2}
derivative\:x^{2}-e^{y^{2}}
derivative of y=arctan(e^x)
derivative\:y=\arctan(e^{x})
integral of 3x^2-6x
\int\:3x^{2}-6xdx
area f(x)=x^2+x-56,g(x)=-x^2+3x+4
area\:f(x)=x^{2}+x-56,g(x)=-x^{2}+3x+4
derivative of 1+a/r-b/(r^3)
derivative\:1+\frac{a}{r}-\frac{b}{r^{3}}
integral of (sec(x)tan(x))/(sec(x)-1)
\int\:\frac{\sec(x)\tan(x)}{\sec(x)-1}dx
derivative of (x+2)(2x^2-3)
derivative\:(x+2)(2x^{2}-3)
integral of xe^{kx}
\int\:xe^{kx}dx
inverse oflaplace s+1-2.82j
inverselaplace\:s+1-2.82j
integral of 3x^2-18
\int\:3x^{2}-18dx
limit as x approaches 0 of x^2cos(20pix)
\lim\:_{x\to\:0}(x^{2}\cos(20πx))
integral of u/(1+u)
\int\:\frac{u}{1+u}du
integral of 1/(9-3x)
\int\:\frac{1}{9-3x}dx
y^{''}-2y^'+y=2(1-x)*cos(x)-2sin(x)
y^{\prime\:\prime\:}-2y^{\prime\:}+y=2(1-x)\cdot\:\cos(x)-2\sin(x)
area 3x^2,x^4-x^2,[-2,2]
area\:3x^{2},x^{4}-x^{2},[-2,2]
integral of (30x^3-60x^2+7)/(x^2-2x)
\int\:\frac{30x^{3}-60x^{2}+7}{x^{2}-2x}dx
integral of (-15)/(x^2sqrt(x^2+4))
\int\:\frac{-15}{x^{2}\sqrt{x^{2}+4}}dx
integral of 3(x^4)/(e^{x^5)}
\int\:3\frac{x^{4}}{e^{x^{5}}}dx
integral from 0 to pi/4 of 1
\int\:_{0}^{\frac{π}{4}}1
derivative of 9x+1-x^2
derivative\:9x+1-x^{2}
limit as x approaches 1 of (x^2-3x)/(x-1)
\lim\:_{x\to\:1}(\frac{x^{2}-3x}{x-1})
integral of (e^{2y})/(sqrt(e^y-1))
\int\:\frac{e^{2y}}{\sqrt{e^{y}-1}}dy
integral of tcos^5(t^2)
\int\:t\cos^{5}(t^{2})dt
derivative of y=sqrt(1+2e^{8x)}
derivative\:y=\sqrt{1+2e^{8x}}
sum from n=1 to infinity of 1/(7n^2+n+6)
\sum\:_{n=1}^{\infty\:}\frac{1}{7n^{2}+n+6}
derivative of-ce^{-x}
\frac{d}{dx}(-ce^{-x})
integral of 1/((2x-3)(3x^2+x))
\int\:\frac{1}{(2x-3)(3x^{2}+x)}dx
integral from 0 to 1 of xe^x-e^x
\int\:_{0}^{1}xe^{x}-e^{x}dx
y^{''}+4y=sec(2t)
y^{\prime\:\prime\:}+4y=\sec(2t)
(\partial)/(\partial x)((2x+1)^y)
\frac{\partial\:}{\partial\:x}((2x+1)^{y})
integral of 10csc^2(5x)cot(5x)
\int\:10\csc^{2}(5x)\cot(5x)dx
(\partial)/(\partial x)((sin(x+y))/(y^2))
\frac{\partial\:}{\partial\:x}(\frac{\sin(x+y)}{y^{2}})
4(dy)/(dx)-12x^2=0
4\frac{dy}{dx}-12x^{2}=0
derivative of y=(80)/(x^6)
derivative\:y=\frac{80}{x^{6}}
derivative of y=sqrt(3x)+2cos(x)
derivative\:y=\sqrt{3x}+2\cos(x)
integral of 6e^{4x}
\int\:6e^{4x}dx
(\partial)/(\partial x)((x-y)^n)
\frac{\partial\:}{\partial\:x}((x-y)^{n})
integral from 0 to 1 of x^2arctan(x)
\int\:_{0}^{1}x^{2}\arctan(x)dx
sum from n=1 to infinity of (10)/(3^n)
\sum\:_{n=1}^{\infty\:}\frac{10}{3^{n}}
integral from 0 to 1 of 1/((x+1)(x-2))
\int\:_{0}^{1}\frac{1}{(x+1)(x-2)}dx
integral of (sqrt(x^2-a^2))/x
\int\:\frac{\sqrt{x^{2}-a^{2}}}{x}dx
(\partial)/(\partial y)(cos(x^2)sin(yz))
\frac{\partial\:}{\partial\:y}(\cos(x^{2})\sin(yz))
(dy)/(dx)=(y^2+4xsqrt(x^2+y^2))/(xy)
\frac{dy}{dx}=\frac{y^{2}+4x\sqrt{x^{2}+y^{2}}}{xy}
f(x)= 1/(x^5)
f(x)=\frac{1}{x^{5}}
derivative of f(x)=(x^3-3x)(2x^2+3x+5)
derivative\:f(x)=(x^{3}-3x)(2x^{2}+3x+5)
integral of 2sin(θ)-sec^2(θ)
\int\:2\sin(θ)-\sec^{2}(θ)dθ
limit as x approaches+0 of x/(arctan(x))
\lim\:_{x\to\:+0}(\frac{x}{\arctan(x)})
1
..
741
742
743
744
745
..
1823