You can see your coupon in the
user page
Go To QuillBot
Upgrade to Pro
Continue to site
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Solutions
Integral Calculator
Derivative Calculator
Algebra Calculator
Matrix Calculator
More...
Graphing
Line Graph Calculator
Exponential Graph Calculator
Quadratic Graph Calculator
Sine Graph Calculator
More...
Calculators
BMI Calculator
Compound Interest Calculator
Percentage Calculator
Acceleration Calculator
More...
Geometry
Pythagorean Theorem Calculator
Circle Area Calculator
Isosceles Triangle Calculator
Triangles Calculator
More...
Tools
Notebook
Groups
Cheat Sheets
Worksheets
Study Guides
Practice
Verify Solution
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Upgrade
×
Symbolab for Chrome
Snip & solve on any website
Add to Chrome
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Calculations
Graphs
Popular Calculus Problems
derivative of sqrt(2+cos(2x))
\frac{d}{dx}(\sqrt{2+\cos(2x)})
partialfraction x/(x^2-9)
partialfraction\:\frac{x}{x^{2}-9}
d/(dy)(sinh(y))
\frac{d}{dy}(\sinh(y))
implicit x^2+11xy+y^2=11
implicit\:x^{2}+11xy+y^{2}=11
x(x^3+1)y^'+(2x^3-1)y=((x^3-2))/x
x(x^{3}+1)y^{\prime\:}+(2x^{3}-1)y=\frac{(x^{3}-2)}{x}
derivative of 3log_{10}(x)
\frac{d}{dx}(3\log_{10}(x))
(\partial)/(\partial x)(1/(2x+4y^2))
\frac{\partial\:}{\partial\:x}(\frac{1}{2x+4y^{2}})
integral from 0 to 3 of x^2sqrt(9-x^2)
\int\:_{0}^{3}x^{2}\sqrt{9-x^{2}}dx
sum from n=0 to infinity of ((nx)/6)^n
\sum\:_{n=0}^{\infty\:}(\frac{nx}{6})^{n}
limit as x approaches+2 of sqrt(2-x)
\lim\:_{x\to\:+2}(\sqrt{2-x})
derivative of f(x)=(2t-1)(3t-4)^{-1}
derivative\:f(x)=(2t-1)(3t-4)^{-1}
(\partial)/(\partial x)(x^3+2xy+y^2)
\frac{\partial\:}{\partial\:x}(x^{3}+2xy+y^{2})
derivative of 0.015+x
\frac{d}{dx}(0.015+x)
tangent of f(x)=6x^2-10x+4,\at x=1
tangent\:f(x)=6x^{2}-10x+4,\at\:x=1
limit as x approaches 3 of ln(x)
\lim\:_{x\to\:3}(\ln(x))
integral of e^{2y}-ycos(xy)
\int\:e^{2y}-y\cos(xy)dx
derivative of 4.9x^2
\frac{d}{dx}(4.9x^{2})
(\partial}{\partial x}(ln(\frac{x-2)/3))
\frac{\partial\:}{\partial\:x}(\ln(\frac{x-2}{3}))
limit as x approaches 7 of (x-7)/(|x-7|)
\lim\:_{x\to\:7}(\frac{x-7}{\left|x-7\right|})
limit as x approaches 0 of x^2+3x+1
\lim\:_{x\to\:0}(x^{2}+3x+1)
y^{''}+4y^'+3y=0,y(0)=2,y^'(0)=-1
y^{\prime\:\prime\:}+4y^{\prime\:}+3y=0,y(0)=2,y^{\prime\:}(0)=-1
2sqrt(y)dy= 5/(sqrt(x))dx
2\sqrt{y}dy=\frac{5}{\sqrt{x}}dx
derivative of (sqrt(x)+1/(sqrt(x)+3))
\frac{d}{dx}(\frac{\sqrt{x}+1}{\sqrt{x}+3})
(\partial)/(\partial x)(2/3 y^{-1/3})
\frac{\partial\:}{\partial\:x}(\frac{2}{3}y^{-\frac{1}{3}})
y^'=(x+y-1)^2,y(0)=0
y^{\prime\:}=(x+y-1)^{2},y(0)=0
derivative of (4(-x^2-4)/((x^2-4)^2))
\frac{d}{dx}(\frac{4(-x^{2}-4)}{(x^{2}-4)^{2}})
(x^2sin(x^2))^'
(x^{2}\sin(x^{2}))^{\prime\:}
integral of ((4x^3-6x^4))/(2x^6)
\int\:\frac{(4x^{3}-6x^{4})}{2x^{6}}dx
tangent of f(x)=2x^4+3x-3,(2,35)
tangent\:f(x)=2x^{4}+3x-3,(2,35)
derivative of 9a^2+8a-56
derivative\:9a^{2}+8a-56
sum from t=0 to infinity of 1/(t^{0.51)}
\sum\:_{t=0}^{\infty\:}\frac{1}{t^{0.51}}
f(x)=(x/(\sqrt[4]{2x+1)})^{1/x}
f(x)=(\frac{x}{\sqrt[4]{2x+1}})^{\frac{1}{x}}
integral of-3x^2-6x+45
\int\:-3x^{2}-6x+45dx
tangent of f(x)= 1/(x^4),\at x=1
tangent\:f(x)=\frac{1}{x^{4}},\at\:x=1
integral from 6 to 8 of (32)/((x-6)^3)
\int\:_{6}^{8}\frac{32}{(x-6)^{3}}dx
y^'+y=e^xy^2
y^{\prime\:}+y=e^{x}y^{2}
integral from 1 to 2 of ((2x+1)(x-2))/x
\int\:_{1}^{2}\frac{(2x+1)(x-2)}{x}dx
derivative of f(x)= x/(x-7)
derivative\:f(x)=\frac{x}{x-7}
y^{''}+3y^'+2y= 1/(7+e^x)
y^{\prime\:\prime\:}+3y^{\prime\:}+2y=\frac{1}{7+e^{x}}
derivative of 1+1/(2x)
\frac{d}{dx}(1+\frac{1}{2x})
derivative of y=(sqrt(x)-5)/(sqrt(x)+5)
derivative\:y=\frac{\sqrt{x}-5}{\sqrt{x}+5}
derivative of (2x+1^2sqrt(3(2x+1)+10))
\frac{d}{dx}((2x+1)^{2}\sqrt{3(2x+1)+10})
inverse oflaplace 1/(s^2-s+1)
inverselaplace\:\frac{1}{s^{2}-s+1}
sum from n=0 to infinity of 7(2/3)^n
\sum\:_{n=0}^{\infty\:}7(\frac{2}{3})^{n}
integral of (x^3+1)^2x
\int\:(x^{3}+1)^{2}xdx
limit as x approaches 3 of (x+3)/(x+2)
\lim\:_{x\to\:3}(\frac{x+3}{x+2})
derivative of 7/(8x^5)
\frac{d}{dx}(\frac{7}{8x^{5}})
(\partial)/(\partial y)(ycos(z))
\frac{\partial\:}{\partial\:y}(y\cos(z))
(\partial)/(\partial y)(z^2)
\frac{\partial\:}{\partial\:y}(z^{2})
(\partial)/(\partial x)(xy-x+y)
\frac{\partial\:}{\partial\:x}(xy-x+y)
area 0,x^2,-x+5
area\:0,x^{2},-x+5
integral of 1/(cos(x-1))
\int\:\frac{1}{\cos(x-1)}dx
derivative of f(x)=x^3-2x
derivative\:f(x)=x^{3}-2x
area 4x+10,x^2+6x+6,-2,2
area\:4x+10,x^{2}+6x+6,-2,2
(x^2+16)(dy)/(dx)+xy=5x
(x^{2}+16)\frac{dy}{dx}+xy=5x
derivative of log_{8}(5x^3+3x)
derivative\:\log_{8}(5x^{3}+3x)
integral from 0 to 2 of (1+x^2)
\int\:_{0}^{2}(1+x^{2})dx
(\partial)/(\partial x)((x^2)/(16-y^2))
\frac{\partial\:}{\partial\:x}(\frac{x^{2}}{16-y^{2}})
integral of 1/(tan(5x))
\int\:\frac{1}{\tan(5x)}dx
tangent of f(x)= 1/(2+3x),(1, 1/5)
tangent\:f(x)=\frac{1}{2+3x},(1,\frac{1}{5})
laplacetransform e^{-2t}t
laplacetransform\:e^{-2t}t
taylor e^x,-4
taylor\:e^{x},-4
(\partial)/(\partial y)((2x+3y)^{10})
\frac{\partial\:}{\partial\:y}((2x+3y)^{10})
tangent of y= 2/x ,(4, 1/2)
tangent\:y=\frac{2}{x},(4,\frac{1}{2})
tangent of f(x)=e^{-x}ln(x),(1,0)
tangent\:f(x)=e^{-x}\ln(x),(1,0)
integral of 1/(x(x^2+4)^2)
\int\:\frac{1}{x(x^{2}+4)^{2}}dx
d/(dθ)(2sin(5θ))
\frac{d}{dθ}(2\sin(5θ))
integral from 1 to 10 of x/(x^2-4)
\int\:_{1}^{10}\frac{x}{x^{2}-4}dx
derivative of g(x)=2^{x^2+1x}
derivative\:g(x)=2^{x^{2}+1x}
(\partial)/(\partial x)(x^2tan(4x^4y))
\frac{\partial\:}{\partial\:x}(x^{2}\tan(4x^{4}y))
integral of 1/(x^2sqrt(x^2-64))
\int\:\frac{1}{x^{2}\sqrt{x^{2}-64}}dx
integral of 1/(sqrt(t^2-8t+25))
\int\:\frac{1}{\sqrt{t^{2}-8t+25}}dt
(dy)/(dx)=(2x)/(y^2)
\frac{dy}{dx}=\frac{2x}{y^{2}}
limit as x approaches 2 of 6*a+x
\lim\:_{x\to\:2}(6\cdot\:a+x)
inverse oflaplace ((18))/(s(s^2+6s+18))
inverselaplace\:\frac{(18)}{s(s^{2}+6s+18)}
3xy^'+y=12x
3xy^{\prime\:}+y=12x
(\partial)/(\partial y)(5x^2y^3)
\frac{\partial\:}{\partial\:y}(5x^{2}y^{3})
(\partial)/(\partial x)(cos(2x-3y^2))
\frac{\partial\:}{\partial\:x}(\cos(2x-3y^{2}))
integral of (-8x+162)/(x^2+9)
\int\:\frac{-8x+162}{x^{2}+9}dx
x(dy)/(dx)=x^2+2x-3
x\frac{dy}{dx}=x^{2}+2x-3
integral of e^xe^{e^x}
\int\:e^{x}e^{e^{x}}dx
sum from n=2 to infinity of 1/(n^2+6n+8)
\sum\:_{n=2}^{\infty\:}\frac{1}{n^{2}+6n+8}
taylor-(3x-4)^3,3
taylor\:-(3x-4)^{3},3
integral from-1 to 64 of 1/(x^{1/3)}
\int\:_{-1}^{64}\frac{1}{x^{\frac{1}{3}}}dx
sum from n=1 to infinity of 2/(3^n)
\sum\:_{n=1}^{\infty\:}\frac{2}{3^{n}}
limit as x approaches 2 of 3+2x+x^2
\lim\:_{x\to\:2}(3+2x+x^{2})
limit as x approaches 3 of (|x-3|)/(x+3)
\lim\:_{x\to\:3}(\frac{\left|x-3\right|}{x+3})
integral of sin(a)x
\int\:\sin(a)xdx
inverse oflaplace 1/(s^2+3s+2)
inverselaplace\:\frac{1}{s^{2}+3s+2}
derivative of f(t)=(t^2)/(sqrt(t^3+1))
derivative\:f(t)=\frac{t^{2}}{\sqrt{t^{3}+1}}
derivative of (y^{3/2})/3-y^{1/2}
derivative\:\frac{y^{\frac{3}{2}}}{3}-y^{\frac{1}{2}}
derivative of e^{2x}-x
\frac{d}{dx}(e^{2x}-x)
(1/(x^4))^'
(\frac{1}{x^{4}})^{\prime\:}
(\partial)/(\partial x)(4-x^4+2x^2-y^2)
\frac{\partial\:}{\partial\:x}(4-x^{4}+2x^{2}-y^{2})
(\partial)/(\partial x)(4x-sqrt(2y^2+z^2))
\frac{\partial\:}{\partial\:x}(4x-\sqrt{2y^{2}+z^{2}})
derivative of 9e^x+4/(\sqrt[3]{x})
\frac{d}{dx}(9e^{x}+\frac{4}{\sqrt[3]{x}})
limit as x approaches 6 of (x-3)/(x-1)
\lim\:_{x\to\:6}(\frac{x-3}{x-1})
(\partial)/(\partial x)(2e^{-2x}+1/3 e^x)
\frac{\partial\:}{\partial\:x}(2e^{-2x}+\frac{1}{3}e^{x})
integral from 0 to pi/6 of tan(2x)
\int\:_{0}^{\frac{π}{6}}\tan(2x)dx
derivative of f(x)=2e^xcos(x)
derivative\:f(x)=2e^{x}\cos(x)
1
..
283
284
285
286
287
..
1823