You can see your coupon in the
user page
Go To QuillBot
Upgrade to Pro
Continue to site
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Solutions
Integral Calculator
Derivative Calculator
Algebra Calculator
Matrix Calculator
More...
Graphing
Line Graph Calculator
Exponential Graph Calculator
Quadratic Graph Calculator
Sine Graph Calculator
More...
Calculators
BMI Calculator
Compound Interest Calculator
Percentage Calculator
Acceleration Calculator
More...
Geometry
Pythagorean Theorem Calculator
Circle Area Calculator
Isosceles Triangle Calculator
Triangles Calculator
More...
AI Chat
Tools
Notebook
Groups
Cheat Sheets
Worksheets
Study Guides
Practice
Verify Solution
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Upgrade
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Calculations
Graphs
Popular Calculus Problems
(x+1)((dy)/(dx))+(2x-1)y=e^{-2x}
(x+1)(\frac{dy}{dx})+(2x-1)y=e^{-2x}
limit as x approaches-1 of (x+2x^3)^5
\lim\:_{x\to\:-1}((x+2x^{3})^{5})
tangent of f(x)= 1/2-x^2,\at x=-1/2
tangent\:f(x)=\frac{1}{2}-x^{2},\at\:x=-\frac{1}{2}
limit as x approaches+(-5) of 3x-|x+5|
\lim\:_{x\to\:+(-5)}(3x-\left|x+5\right|)
sqrt(1-3x^2)y^'=x
\sqrt{1-3x^{2}}y^{\prime\:}=x
(\partial)/(\partial y)(e^{x^2-y^2+4y})
\frac{\partial\:}{\partial\:y}(e^{x^{2}-y^{2}+4y})
limit as x approaches 1 of (x^3-x)/(1-x)
\lim\:_{x\to\:1}(\frac{x^{3}-x}{1-x})
d/(d{x)}(({x}^2+2{y}^2+3{z}^2)e^{-({x}^2+{y}^2+{z}^2)})
\frac{d}{d{x}}(({x}^{2}+2{y}^{2}+3{z}^{2})e^{-({x}^{2}+{y}^{2}+{z}^{2})})
derivative of 6cos(sin(x^2))
derivative\:6\cos(\sin(x^{2}))
derivative of ln(1+0)
\frac{d}{dx}(\ln(1+0))
integral of x/(sqrt(4-x))
\int\:\frac{x}{\sqrt{4-x}}dx
derivative of x/(sqrt(x^2-4))
\frac{d}{dx}(\frac{x}{\sqrt{x^{2}-4}})
(pi)^'
(π)^{\prime\:}
limit as x approaches 0 of 1/x+1
\lim\:_{x\to\:0}(\frac{1}{x}+1)
integral of x/(1-x^8)
\int\:\frac{x}{1-x^{8}}dx
derivative of f(x)=cos(x^2)2x
derivative\:f(x)=\cos(x^{2})2x
integral of 8x^{-1}
\int\:8x^{-1}dx
integral of 1/(sqrt(x^2+8))
\int\:\frac{1}{\sqrt{x^{2}+8}}dx
tangent of f(x)=-2x^3
tangent\:f(x)=-2x^{3}
inverse oflaplace (s-1)/(2s^2+s+6)
inverselaplace\:\frac{s-1}{2s^{2}+s+6}
integral from 2 to 4 of (2x^2-3x+1)
\int\:_{2}^{4}(2x^{2}-3x+1)dx
limit as x approaches-2 of 3/(x+2)
\lim\:_{x\to\:-2}(\frac{3}{x+2})
y^{''}-8y^'+16y=0,y(0)=4,y^'(0)= 82/5
y^{\prime\:\prime\:}-8y^{\prime\:}+16y=0,y(0)=4,y^{\prime\:}(0)=\frac{82}{5}
integral of sqrt(1-81x^2)
\int\:\sqrt{1-81x^{2}}dx
integral of 7cos^2(x)
\int\:7\cos^{2}(x)dx
e^xy(dy)/(dx)=e^{-y}e^{-2x-y}
e^{x}y\frac{dy}{dx}=e^{-y}e^{-2x-y}
integral of (x^2)/(x+3)
\int\:\frac{x^{2}}{x+3}dx
derivative of sinh(x)
\frac{d}{dx}(\sinh(x))
integral of 3x^2+8x+4
\int\:3x^{2}+8x+4dx
integral of e^{x^5}x^4
\int\:e^{x^{5}}x^{4}dx
derivative of (x-5/(x^2-3x+15))
\frac{d}{dx}(\frac{x-5}{x^{2}-3x+15})
limit as x approaches 2 of (e^x)/(x^3)
\lim\:_{x\to\:2}(\frac{e^{x}}{x^{3}})
sum from n=0 to infinity of | 1/4 |^2
\sum\:_{n=0}^{\infty\:}\left|\frac{1}{4}\right|^{2}
integral of-x/(1+x^4)
\int\:-\frac{x}{1+x^{4}}dx
y^'= 3/(3y)
y^{\prime\:}=\frac{3}{3y}
integral of x^3ln(x^2+1)
\int\:x^{3}\ln(x^{2}+1)dx
integral of 8/(t^9)sin(1/(t^8)-9)
\int\:\frac{8}{t^{9}}\sin(\frac{1}{t^{8}}-9)dt
y^'+tan(x)y=cos^2(x)
y^{\prime\:}+\tan(x)y=\cos^{2}(x)
(\partial)/(\partial x)(tan(2x-y))
\frac{\partial\:}{\partial\:x}(\tan(2x-y))
(\partial)/(\partial x)((x^2-2)e^{x^2y})
\frac{\partial\:}{\partial\:x}((x^{2}-2)e^{x^{2}y})
integral of (30)/(30+e^x)
\int\:\frac{30}{30+e^{x}}dx
derivative of y=4(6-x^2)^5
derivative\:y=4(6-x^{2})^{5}
integral of 4m(9m^2-10m)
\int\:4m(9m^{2}-10m)dm
derivative of ln(15x)
derivative\:\ln(15x)
derivative of f(x)=x^{12}
derivative\:f(x)=x^{12}
limit as x approaches-3 of (3x+1)/(x-3)
\lim\:_{x\to\:-3}(\frac{3x+1}{x-3})
(\partial)/(\partial x)((x^5+y^3)^7)
\frac{\partial\:}{\partial\:x}((x^{5}+y^{3})^{7})
integral of z/((s^2+z^2)^{3/2)}
\int\:\frac{z}{(s^{2}+z^{2})^{\frac{3}{2}}}dz
derivative of m(x)=(-x^2+6x-8)/(-x^2+6x-2)
derivative\:m(x)=\frac{-x^{2}+6x-8}{-x^{2}+6x-2}
tangent of y=-5-6x^2,(-4,-101)
tangent\:y=-5-6x^{2},(-4,-101)
derivative of p(t)=5e^{0.0278t}
derivative\:p(t)=5e^{0.0278t}
derivative of 1/2 x^2+1
\frac{d}{dx}(\frac{1}{2}x^{2}+1)
limit as x approaches-3 of x/(x-4)
\lim\:_{x\to\:-3}(\frac{x}{x-4})
integral of 2e^x-1
\int\:2e^{x}-1dx
integral of sqrt(4x+1)
\int\:\sqrt{4x+1}dx
limit as x approaches 0 of (6x^2)/(2x^2)
\lim\:_{x\to\:0}(\frac{6x^{2}}{2x^{2}})
integral of \sqrt[3]{2x^2}
\int\:\sqrt[3]{2x^{2}}dx
(dy)/(dx)= 1/2 (kx^{-1}-x)
\frac{dy}{dx}=\frac{1}{2}(kx^{-1}-x)
limit as x approaches-4 of-(2x^2-17)/3
\lim\:_{x\to\:-4}(-\frac{2x^{2}-17}{3})
integral of 5y^2
\int\:5y^{2}dy
(\partial)/(\partial x)(2cos(x)cos(y))
\frac{\partial\:}{\partial\:x}(2\cos(x)\cos(y))
limit as h approaches 0 of (13h)/h
\lim\:_{h\to\:0}(\frac{13h}{h})
limit as x approaches 2 of 2x^2-7x-15
\lim\:_{x\to\:2}(2x^{2}-7x-15)
(\partial)/(\partial x)(cos(pixy))
\frac{\partial\:}{\partial\:x}(\cos(πxy))
integral of 4e^{-2x}sin(2x)
\int\:4e^{-2x}\sin(2x)dx
limit as x approaches 1 of x(3)
\lim\:_{x\to\:1}(x(3))
area 4x-20,[4,8]
area\:4x-20,[4,8]
integral of 8sin^3(xco)s^5x
\int\:8\sin^{3}(xco)s^{5}xdx
sum from n=1 to infinity of e/n
\sum\:_{n=1}^{\infty\:}\frac{e}{n}
inverse oflaplace (s-1)/(s^2+2)
inverselaplace\:\frac{s-1}{s^{2}+2}
derivative of f(x)=cos(3x+2)-7x
derivative\:f(x)=\cos(3x+2)-7x
derivative of (xsec^2(x)-tan(x))/(4x^2)
derivative\:\frac{x\sec^{2}(x)-\tan(x)}{4x^{2}}
(dy)/(dx)=3x^2+2x-7
\frac{dy}{dx}=3x^{2}+2x-7
(\partial}{\partial x}(\frac{x^2y^2)/2)
\frac{\partial\:}{\partial\:x}(\frac{x^{2}y^{2}}{2})
sum from n=1 to infinity of n^{-sin(2)}
\sum\:_{n=1}^{\infty\:}n^{-\sin(2)}
(cos^2(θ))^'
(\cos^{2}(θ))^{\prime\:}
taylor 1/(sqrt(1-x))
taylor\:\frac{1}{\sqrt{1-x}}
derivative of (8x/(3-tan(x)))
\frac{d}{dx}(\frac{8x}{3-\tan(x)})
derivative of f(x)=7x+2
derivative\:f(x)=7x+2
derivative of-x^2
\frac{d}{dx}(-x^{2})
derivative of sec^2(xtan(x))
\frac{d}{dx}(\sec^{2}(x)\tan(x))
(\partial)/(\partial x)(ln(x+7y+2z))
\frac{\partial\:}{\partial\:x}(\ln(x+7y+2z))
integral from 6 to 8 of (72)/((x-6)^3)
\int\:_{6}^{8}\frac{72}{(x-6)^{3}}dx
limit as x approaches 3 of sqrt(f(x))
\lim\:_{x\to\:3}(\sqrt{f(x)})
(dy)/(dx)=(x^2y^2)/(1+2)
\frac{dy}{dx}=\frac{x^{2}y^{2}}{1+2}
integral of (7-98x)/(sqrt(9-49x^2))
\int\:\frac{7-98x}{\sqrt{9-49x^{2}}}dx
tangent of y=5+4x^2-2x^3
tangent\:y=5+4x^{2}-2x^{3}
derivative of x^2+4x-3
derivative\:x^{2}+4x-3
tangent of 3.5x-2x^2
tangent\:3.5x-2x^{2}
integral of (1-2x)/(x+1)
\int\:\frac{1-2x}{x+1}dx
d/(d{r)}(e^{{r}}+{r}^e)
\frac{d}{d{r}}(e^{{r}}+{r}^{e})
area 13sin(x),13cos(x),0,pi
area\:13\sin(x),13\cos(x),0,π
limit as x approaches infinity of [0,x]
\lim\:_{x\to\:\infty\:}([0,x])
limit as t approaches 0-of 2t-4
\lim\:_{t\to\:0-}(2t-4)
limit as x approaches 0-of-2+(18)/(x^2)
\lim\:_{x\to\:0-}(-2+\frac{18}{x^{2}})
limit as x approaches 6+of 3/(x-6)
\lim\:_{x\to\:6+}(\frac{3}{x-6})
limit as x approaches 3 of sqrt(x+13)
\lim\:_{x\to\:3}(\sqrt{x+13})
sum from n=1 to infinity of n*(2/3)^n
\sum\:_{n=1}^{\infty\:}n\cdot\:(\frac{2}{3})^{n}
derivative of x/(x^2-9)
derivative\:\frac{x}{x^{2}-9}
derivative of ln(sqrt(x^2-2))
\frac{d}{dx}(\ln(\sqrt{x^{2}-2}))
1
..
932
933
934
935
936
..
1823