You can see your coupon in the
user page
Go To QuillBot
Upgrade to Pro
Continue to site
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Solutions
Integral Calculator
Derivative Calculator
Algebra Calculator
Matrix Calculator
More...
Graphing
Line Graph Calculator
Exponential Graph Calculator
Quadratic Graph Calculator
Sine Graph Calculator
More...
Calculators
BMI Calculator
Compound Interest Calculator
Percentage Calculator
Acceleration Calculator
More...
Geometry
Pythagorean Theorem Calculator
Circle Area Calculator
Isosceles Triangle Calculator
Triangles Calculator
More...
Tools
Notebook
Groups
Cheat Sheets
Worksheets
Study Guides
Practice
Verify Solution
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Upgrade
×
Symbolab for Chrome
Snip & solve on any website
Add to Chrome
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Calculations
Graphs
Popular Calculus Problems
integral of sec(8x)tan(8x)
\int\:\sec(8x)\tan(8x)dx
integral of (sin(5x))/5
\int\:\frac{\sin(5x)}{5}dx
y^{''}-y^'+y=3sin(t)-27e^{2t}
y^{\prime\:\prime\:}-y^{\prime\:}+y=3\sin(t)-27e^{2t}
derivative of ar(xcot(x/y))
\frac{d}{dx}(ar(x)\cot(\frac{x}{y}))
limit as x approaches 0 of x^{1/(1-x)}
\lim\:_{x\to\:0}(x^{\frac{1}{1-x}})
sum from n=1 to infinity of 1/(2+5^n)
\sum\:_{n=1}^{\infty\:}\frac{1}{2+5^{n}}
limit as x approaches-2 of x^4+5
\lim\:_{x\to\:-2}(x^{4}+5)
(\partial)/(\partial y)(sin(3x-6y))
\frac{\partial\:}{\partial\:y}(\sin(3x-6y))
derivative of-(200ln(f/(40)))/(f+20)
derivative\:-\frac{200\ln(\frac{f}{40})}{f+20}
derivative of cos(x-e^x)
\frac{d}{dx}(\cos(x)-e^{x})
integral of tan^4(x/2)sec^4(x/2)
\int\:\tan^{4}(\frac{x}{2})\sec^{4}(\frac{x}{2})dx
integral of 1/(sqrt(9+y^2))
\int\:\frac{1}{\sqrt{9+y^{2}}}dy
limit as t approaches 0 of (4e^t-4)/t
\lim\:_{t\to\:0}(\frac{4e^{t}-4}{t})
inverse oflaplace (s+1)/((s+2)^2)
inverselaplace\:\frac{s+1}{(s+2)^{2}}
(\partial)/(\partial y)(ln(x^3+1)+y^2)
\frac{\partial\:}{\partial\:y}(\ln(x^{3}+1)+y^{2})
derivative of {f}(x(x^3))
\frac{d}{dx}({f}(x)(x^{3}))
limit as x approaches-1 of (2/3)^x
\lim\:_{x\to\:-1}((\frac{2}{3})^{x})
integral from 1/2 to 3 of 4xln(2x)
\int\:_{\frac{1}{2}}^{3}4x\ln(2x)dx
(\partial)/(\partial x)(x^2*sin(2y))
\frac{\partial\:}{\partial\:x}(x^{2}\cdot\:\sin(2y))
limit as x approaches 2 of x^2-6x
\lim\:_{x\to\:2}(x^{2}-6x)
y^{''}+5y^'+4y=-18te^{4t}
y^{\prime\:\prime\:}+5y^{\prime\:}+4y=-18te^{4t}
derivative of xe^{-sin(x}-x)
\frac{d}{dx}(xe^{-\sin(x)}-x)
limit as x approaches 2 of sqrt(2.1-1)+3
\lim\:_{x\to\:2}(\sqrt{2.1-1}+3)
tangent of f(x)=(x^2-12)(2x-9)
tangent\:f(x)=(x^{2}-12)(2x-9)
y^'=5y
y^{\prime\:}=5y
limit as z approaches 0 of (2z-8)^{1/3}
\lim\:_{z\to\:0}((2z-8)^{\frac{1}{3}})
y^'=-2xtan(y),y(0)= pi/2
y^{\prime\:}=-2x\tan(y),y(0)=\frac{π}{2}
derivative of tan(xln(x))
\frac{d}{dx}(\tan(x)\ln(x))
limit as x approaches 3 of 4x^3-3x^2+x-5
\lim\:_{x\to\:3}(4x^{3}-3x^{2}+x-5)
tangent of-8sin(x)
tangent\:-8\sin(x)
derivative of x^4+2x^2+1
\frac{d}{dx}(x^{4}+2x^{2}+1)
d/(dt)((cos(t))/t)
\frac{d}{dt}(\frac{\cos(t)}{t})
integral from 0 to 1 of x^2e^{-x}
\int\:_{0}^{1}x^{2}e^{-x}dx
integral of (x-4)^3
\int\:(x-4)^{3}dx
limit as x approaches-1 of (x+4)/(2x+1)
\lim\:_{x\to\:-1}(\frac{x+4}{2x+1})
integral of (sec^2(x)-7)
\int\:(\sec^{2}(x)-7)dx
derivative of f(x)=(3x)/(x-2)
derivative\:f(x)=\frac{3x}{x-2}
limit as h approaches 0 of ((h-1)^3+1)/h
\lim\:_{h\to\:0}(\frac{(h-1)^{3}+1}{h})
derivative of sqrt(x)+7
\frac{d}{dx}(\sqrt{x}+7)
integral of [6cos(x)-2sec(x)tan(x)]
\int\:[6\cos(x)-2\sec(x)\tan(x)]dx
integral of sec(u)tan(u)
\int\:\sec(u)\tan(u)du
derivative of log_{3}(x^3+1)
derivative\:\log_{3}(x^{3}+1)
derivative of x/(sqrt(3))
\frac{d}{dx}(\frac{x}{\sqrt{3}})
area y=2sqrt(x),[4,9]
area\:y=2\sqrt{x},[4,9]
derivative of (3x^2+2x-1^4)
\frac{d}{dx}((3x^{2}+2x-1)^{4})
(dy)/(dt)=(y^2+1)t
\frac{dy}{dt}=(y^{2}+1)t
derivative of sqrt(10+x)
\frac{d}{dx}(\sqrt{10+x})
limit as x approaches 0 of 2/x-2/(x^2-x)
\lim\:_{x\to\:0}(\frac{2}{x}-\frac{2}{x^{2}-x})
(\partial)/(\partial x)(xy^2z^2)
\frac{\partial\:}{\partial\:x}(xy^{2}z^{2})
integral of (1/4 x^6-5x^3+9x)
\int\:(\frac{1}{4}x^{6}-5x^{3}+9x)dx
limit as x approaches 0 of (|x(h+1)|)/x
\lim\:_{x\to\:0}(\frac{\left|x(h+1)\right|}{x})
derivative of x+5/x
derivative\:x+\frac{5}{x}
integral from 0 to 1 of (10)/(4y-1)
\int\:_{0}^{1}\frac{10}{4y-1}dy
limit as x approaches-1 of ln(x)
\lim\:_{x\to\:-1}(\ln(x))
derivative of y=sin^2(x^3)
derivative\:y=\sin^{2}(x^{3})
limit as h approaches 0 of ((h-3)^2-9)/h
\lim\:_{h\to\:0}(\frac{(h-3)^{2}-9}{h})
taylor sqrt(8+x^2),1
taylor\:\sqrt{8+x^{2}},1
f(x)=4x^5ln(x)
f(x)=4x^{5}\ln(x)
maclaurin ln(1-x^2)
maclaurin\:\ln(1-x^{2})
integral of t^2e^{t/3}
\int\:t^{2}e^{\frac{t}{3}}dt
limit as x approaches infinity of ((e^{-xy-x+y}))/(x^2y^2+xy)
\lim\:_{x\to\:\infty\:}(\frac{(e^{-xy-x+y})}{x^{2}y^{2}+xy})
y^{''}-2y^'+8y=320t^2
y^{\prime\:\prime\:}-2y^{\prime\:}+8y=320t^{2}
derivative of 1/(sqrt(3x))
derivative\:\frac{1}{\sqrt{3x}}
limit as x approaches 4 of (x+4)/(x-4)
\lim\:_{x\to\:4}(\frac{x+4}{x-4})
integral of t/(e^{3t)}
\int\:\frac{t}{e^{3t}}dt
integral of (1/(sqrt(x^2-1)))
\int\:(\frac{1}{\sqrt{x^{2}-1}})dx
area 2x^2-4,x^2
area\:2x^{2}-4,x^{2}
derivative of f(x)=(x-x^2)
derivative\:f(x)=(x-x^{2})
(y)dx+(y-x)dy=0
(y)dx+(y-x)dy=0
derivative of a\sqrt[n]{x}+b\sqrt[3]{x}
\frac{d}{dx}(a\sqrt[n]{x}+b\sqrt[3]{x})
tangent of y= 5/(4x+1),(1,1)
tangent\:y=\frac{5}{4x+1},(1,1)
integral of sqrt(9/(5-6x))
\int\:\sqrt{\frac{9}{5-6x}}dx
inverse oflaplace ((2s+1))/(s^2+5s+6)
inverselaplace\:\frac{(2s+1)}{s^{2}+5s+6}
(dy)/(dt)= 9/40-y/(200)
\frac{dy}{dt}=\frac{9}{40}-\frac{y}{200}
taylor x^{11/2},5
taylor\:x^{\frac{11}{2}},5
derivative of 5x^2e^{3x-7}
\frac{d}{dx}(5x^{2}e^{3x-7})
(dy)/(dx)+3/x y=16y^3
\frac{dy}{dx}+\frac{3}{x}y=16y^{3}
integral from 4 to 7 of x/(x^2+6x+13)
\int\:_{4}^{7}\frac{x}{x^{2}+6x+13}dx
tangent of f(x)=2x^2+2x,\at x=-3
tangent\:f(x)=2x^{2}+2x,\at\:x=-3
integral of xe-x
\int\:xe-xdx
slope of (-4,2),(-9,-10)
slope\:(-4,2),(-9,-10)
sum from n=0 to infinity of-1/(3^n)
\sum\:_{n=0}^{\infty\:}-\frac{1}{3^{n}}
derivative of sec^2(x-4)
\frac{d}{dx}(\sec^{2}(x)-4)
derivative of arcsin(x/5)
derivative\:\arcsin(\frac{x}{5})
integral of (x^2)/(x^3+5)
\int\:\frac{x^{2}}{x^{3}+5}dx
f(t)=sec(t)
f(t)=\sec(t)
sum from n=0 to infinity of (e/(6pi))^n
\sum\:_{n=0}^{\infty\:}(\frac{e}{6π})^{n}
partialfraction (x^2)/(1-x)
partialfraction\:\frac{x^{2}}{1-x}
y^{''}+3y^'-10y=6e^{4x}
y^{\prime\:\prime\:}+3y^{\prime\:}-10y=6e^{4x}
integral of x/(sqrt(x-9))
\int\:\frac{x}{\sqrt{x-9}}dx
xy^2y^'=x^3+2y^3
xy^{2}y^{\prime\:}=x^{3}+2y^{3}
derivative of (2x/(3x^2-3))
\frac{d}{dx}(\frac{2x}{3x^{2}-3})
tangent of f(x)=6sqrt(x),\at x=9
tangent\:f(x)=6\sqrt{x},\at\:x=9
integral of 2e^xx
\int\:2e^{x}xdx
derivative of y=ln(x^5)
derivative\:y=\ln(x^{5})
derivative of-3/(x^2+4e^{2x})
\frac{d}{dx}(-\frac{3}{x^{2}}+4e^{2x})
f(x)=(x^2)/3
f(x)=\frac{x^{2}}{3}
(\partial)/(\partial y)(2x+3y-7)
\frac{\partial\:}{\partial\:y}(2x+3y-7)
integral of 1 (cos(2x))
\int\:\frac{d}{1}(\cos(2x))dx
sum from n=1 to infinity of (1-p)^{3n}
\sum\:_{n=1}^{\infty\:}(1-p)^{3n}
1
..
1109
1110
1111
1112
1113
..
1823