You can see your coupon in the
user page
Go To QuillBot
Upgrade to Pro
Continue to site
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Solutions
Integral Calculator
Derivative Calculator
Algebra Calculator
Matrix Calculator
More...
Graphing
Line Graph Calculator
Exponential Graph Calculator
Quadratic Graph Calculator
Sine Graph Calculator
More...
Calculators
BMI Calculator
Compound Interest Calculator
Percentage Calculator
Acceleration Calculator
More...
Geometry
Pythagorean Theorem Calculator
Circle Area Calculator
Isosceles Triangle Calculator
Triangles Calculator
More...
Tools
Notebook
Groups
Cheat Sheets
Worksheets
Study Guides
Practice
Verify Solution
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Upgrade
×
Symbolab for Chrome
Snip & solve on any website
Add to Chrome
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Calculations
Graphs
Popular Calculus Problems
derivative of x-\sqrt[5]{1+x^5-6x^{10}}
\frac{d}{dx}(x-\sqrt[5]{1+x^{5}-6x^{10}})
integral of x^3sqrt(x)
\int\:x^{3}\sqrt{x}dx
integral from 0 to 1 of (12)/(4x^2+5x+1)
\int\:_{0}^{1}\frac{12}{4x^{2}+5x+1}dx
limit as x approaches 2 of x(x-4)
\lim\:_{x\to\:2}(x(x-4))
derivative of x^2(1-xsqrt(x))
\frac{d}{dx}(x^{2}(1-x\sqrt{x}))
limit as x approaches infinity+of x^2e^x
\lim\:_{x\to\:\infty\:+}(x^{2}e^{x})
integral of sin^2(2t)
\int\:\sin^{2}(2t)dt
integral from 0 to 5 of x^3sqrt(1+9x^4)
\int\:_{0}^{5}x^{3}\sqrt{1+9x^{4}}dx
integral of (4x+2)/(e^x)
\int\:\frac{4x+2}{e^{x}}dx
integral of 1/(cos^2(t))
\int\:\frac{1}{\cos^{2}(t)}dt
derivative of f(x)=2x^3+x
derivative\:f(x)=2x^{3}+x
limit as x approaches 0 of sin(1/2)
\lim\:_{x\to\:0}(\sin(\frac{1}{2}))
integral of (9x^2)/(x^3+8)
\int\:\frac{9x^{2}}{x^{3}+8}dx
integral of ((x^2-8))/(8x)
\int\:\frac{(x^{2}-8)}{8x}dx
integral from 0 to 1 of 6cos(x^2)
\int\:_{0}^{1}6\cos(x^{2})dx
(\partial)/(\partial x)(4x^3-4y)
\frac{\partial\:}{\partial\:x}(4x^{3}-4y)
(dy}{dx}+\frac{3y)/x =6x^2
\frac{dy}{dx}+\frac{3y}{x}=6x^{2}
derivative of sin(2t)
derivative\:\sin(2t)
(\partial)/(\partial x)(x^{0.75})
\frac{\partial\:}{\partial\:x}(x^{0.75})
y^{''}+2y^'-y=0,y(0)=0,y^'(0)=2sqrt(2)
y^{\prime\:\prime\:}+2y^{\prime\:}-y=0,y(0)=0,y^{\prime\:}(0)=2\sqrt{2}
limit as x approaches 1/2 of 3x-5
\lim\:_{x\to\:\frac{1}{2}}(3x-5)
integral of (x^2-2x+5)/(sqrt(9-x^2))
\int\:\frac{x^{2}-2x+5}{\sqrt{9-x^{2}}}dx
tangent of y=-x^2,(8,-64)
tangent\:y=-x^{2},(8,-64)
area e^x,e^{-4x},ln(4)
area\:e^{x},e^{-4x},\ln(4)
integral of-x^2+x+6
\int\:-x^{2}+x+6dx
area y=sqrt(x+3),x=-3,y=5
area\:y=\sqrt{x+3},x=-3,y=5
(\partial)/(\partial x)(2000e^{(x)(y)})
\frac{\partial\:}{\partial\:x}(2000e^{(x)(y)})
derivative of sqrt(t^2+a^2)
derivative\:\sqrt{t^{2}+a^{2}}
derivative of x^4e^{10x}
\frac{d}{dx}(x^{4}e^{10x})
derivative of 8/5 x^{-2/4}
\frac{d}{dx}(\frac{8}{5}x^{-\frac{2}{4}})
tangent of f(x)=x^3+2x,\at x=3
tangent\:f(x)=x^{3}+2x,\at\:x=3
limit as x approaches 1 of 7
\lim\:_{x\to\:1}(7)
maclaurin x^4
maclaurin\:x^{4}
area v(t)=sqrt(t)-13,[0,3]
area\:v(t)=\sqrt{t}-13,[0,3]
area 2x^3+10x^2+22x-3,x^3-x^2-6x-3,-2,-2
area\:2x^{3}+10x^{2}+22x-3,x^{3}-x^{2}-6x-3,-2,-2
derivative of 2/((1+x^3))
\frac{d}{dx}(\frac{2}{(1+x)^{3}})
tangent of y=x^2+x,(1,2)
tangent\:y=x^{2}+x,(1,2)
area x^2+12x,3x^2+10,1,4
area\:x^{2}+12x,3x^{2}+10,1,4
y^{''}-4y^'+4y=3x^2+2xe^{2x}
y^{\prime\:\prime\:}-4y^{\prime\:}+4y=3x^{2}+2xe^{2x}
sum from n=9 to infinity of e^{3-2n}
\sum\:_{n=9}^{\infty\:}e^{3-2n}
inverse oflaplace 1/(1+x)
inverselaplace\:\frac{1}{1+x}
integral of sqrt(5x-3)
\int\:\sqrt{5x-3}dx
limit as x approaches 0 of e^{pi(x+1)}
\lim\:_{x\to\:0}(e^{π(x+1)})
y^'=2xy^2+3x^2y^2
y^{\prime\:}=2xy^{2}+3x^{2}y^{2}
limit as x approaches-7 of 1/(x^2(x+7))
\lim\:_{x\to\:-7}(\frac{1}{x^{2}(x+7)})
x^{''}+x=e^{2t}
x^{\prime\:\prime\:}+x=e^{2t}
(\partial)/(\partial x)(ln(x+8y+4z))
\frac{\partial\:}{\partial\:x}(\ln(x+8y+4z))
limit as x approaches 0 of ln(x+1)
\lim\:_{x\to\:0}(\ln(x+1))
derivative of (6xh+3h^2)/h
derivative\:\frac{6xh+3h^{2}}{h}
derivative of f(x)=-e^x
derivative\:f(x)=-e^{x}
(\partial)/(\partial x)(In|x-y|)
\frac{\partial\:}{\partial\:x}(In\left|x-y\right|)
limit as x approaches 2 of e^{3/((2-x))}
\lim\:_{x\to\:2}(e^{\frac{3}{(2-x)}})
y^{''}-y^'-12y=2e^{3x}
y^{\prime\:\prime\:}-y^{\prime\:}-12y=2e^{3x}
(\partial)/(\partial v)({u}(v)(v)^2e^{-v})
\frac{\partial\:}{\partial\:v}({u}(v)(v)^{2}e^{-v})
limit as x approaches-7 of (x+7)/(|x+7|)
\lim\:_{x\to\:-7}(\frac{x+7}{\left|x+7\right|})
integral from 1 to e of ln(10x)
\int\:_{1}^{e}\ln(10x)dx
derivative of y=sin^2(4pit-5)
derivative\:y=\sin^{2}(4πt-5)
derivative of sqrt(x^2-4)+sqrt(4-y^2)
\frac{d}{dx}(\sqrt{x^{2}-4}+\sqrt{4-y^{2}})
integral of x^2(x^3+1)^4
\int\:x^{2}(x^{3}+1)^{4}dx
(\partial)/(\partial x)(x^2+y^2+48-xy-6x)
\frac{\partial\:}{\partial\:x}(x^{2}+y^{2}+48-xy-6x)
derivative of (cos(x))/(x^7)
derivative\:\frac{\cos(x)}{x^{7}}
tangent of f(x)=x^2-3x
tangent\:f(x)=x^{2}-3x
integral of 21te^t
\int\:21te^{t}dt
integral of 3xsqrt(x^2+4)
\int\:3x\sqrt{x^{2}+4}dx
derivative of e^{-5x}cos(3x)
\frac{d}{dx}(e^{-5x}\cos(3x))
integral of ln(7x+1)
\int\:\ln(7x+1)dx
derivative of (3x^5-1(2-x^4))
\frac{d}{dx}((3x^{5}-1)(2-x^{4}))
derivative of y=xsqrt(x+1)
derivative\:y=x\sqrt{x+1}
integral of 2x^3sqrt(x^2-1)
\int\:2x^{3}\sqrt{x^{2}-1}dx
integral of 7e^{-0.2x}
\int\:7e^{-0.2x}dx
derivative of e^{tan(pix})
\frac{d}{dx}(e^{\tan(πx)})
integral of (40)/(40+e^x)
\int\:\frac{40}{40+e^{x}}dx
f(x)=2e^{x-1}
f(x)=2e^{x-1}
integral of 9/(x+1)
\int\:\frac{9}{x+1}dx
area y=7x^2,y^2= 1/7 x
area\:y=7x^{2},y^{2}=\frac{1}{7}x
taylor 1/(sqrt(1+x))
taylor\:\frac{1}{\sqrt{1+x}}
limit as x approaches 3+of x^2
\lim\:_{x\to\:3+}(x^{2})
integral of 1/(x^3+3x^2)
\int\:\frac{1}{x^{3}+3x^{2}}dx
y^{''}-y^'-2y=-6t+10t^2
y^{\prime\:\prime\:}-y^{\prime\:}-2y=-6t+10t^{2}
inverse oflaplace (1+e^{-spi})/(s^2+1)
inverselaplace\:\frac{1+e^{-sπ}}{s^{2}+1}
derivative of y=3e^{3e^x+x}
derivative\:y=3e^{3e^{x}+x}
area tan(x),2sin(x),[-pi/3 , pi/3 ]
area\:\tan(x),2\sin(x),[-\frac{π}{3},\frac{π}{3}]
(\partial)/(\partial x)(e^{-2x})
\frac{\partial\:}{\partial\:x}(e^{-2x})
derivative of (4x^{3x})
\frac{d}{dx}((4x)^{3x})
area y=0,y=x^2,y=x+2
area\:y=0,y=x^{2},y=x+2
limit as x approaches infinity of |2-x|
\lim\:_{x\to\:\infty\:}(\left|2-x\right|)
derivative of 0.5(1-cos(x))
\frac{d}{dx}(0.5(1-\cos(x)))
(dy)/(dx)=sqrt(4y)e^{x+6}
\frac{dy}{dx}=\sqrt{4y}e^{x+6}
(\partial)/(\partial x)(2x^3+2xy^3)
\frac{\partial\:}{\partial\:x}(2x^{3}+2xy^{3})
integral of 1/(16x)
\int\:\frac{1}{16x}dx
(\partial)/(\partial x)(y^3sin(3x))
\frac{\partial\:}{\partial\:x}(y^{3}\sin(3x))
derivative of g(x)=((pi^2))/(x^2+4x)
derivative\:g(x)=\frac{(π^{2})}{x^{2}+4x}
derivative of sec(x-x)
\frac{d}{dx}(\sec(x)-x)
tangent of y=x^2+4x-11,(2,-1)
tangent\:y=x^{2}+4x-11,(2,-1)
taylor f(x)=sqrt(1+x),x=0
taylor\:f(x)=\sqrt{1+x},x=0
derivative of 2sqrt(1-x^2)
\frac{d}{dx}(2\sqrt{1-x^{2}})
limit as x approaches infinity of x^2+x
\lim\:_{x\to\:\infty\:}(x^{2}+x)
derivative of f(x)=\sqrt[3]{x^4}
derivative\:f(x)=\sqrt[3]{x^{4}}
limit as x approaches+(-1) of-x^2+4x-5
\lim\:_{x\to\:+(-1)}(-x^{2}+4x-5)
(dy)/(dx)=4xsqrt(1-y^2)
\frac{dy}{dx}=4x\sqrt{1-y^{2}}
1
..
364
365
366
367
368
..
1823