You can see your coupon in the
user page
Go To QuillBot
Upgrade to Pro
Continue to site
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Solutions
Integral Calculator
Derivative Calculator
Algebra Calculator
Matrix Calculator
More...
Graphing
Line Graph Calculator
Exponential Graph Calculator
Quadratic Graph Calculator
Sine Graph Calculator
More...
Calculators
BMI Calculator
Compound Interest Calculator
Percentage Calculator
Acceleration Calculator
More...
Geometry
Pythagorean Theorem Calculator
Circle Area Calculator
Isosceles Triangle Calculator
Triangles Calculator
More...
Tools
Notebook
Groups
Cheat Sheets
Worksheets
Study Guides
Practice
Verify Solution
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Upgrade
×
Symbolab for Chrome
Snip & solve on any website
Add to Chrome
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Calculations
Graphs
Popular Calculus Problems
integral of (2x^2+1)e^{x^2}
\int\:(2x^{2}+1)e^{x^{2}}dx
integral of e^{6t}cos(2t)
\int\:e^{6t}\cos(2t)dt
integral from 0 to 2pi of 3sin(2t)
\int\:_{0}^{2π}3\sin(2t)dt
derivative of ln((8x/(x+5)))
\frac{d}{dx}(\ln(\frac{8x}{x+5}))
limit as x approaches 5 of 1/((x-5)^3)
\lim\:_{x\to\:5}(\frac{1}{(x-5)^{3}})
(\partial)/(\partial x)((e^x)/(y+x^8))
\frac{\partial\:}{\partial\:x}(\frac{e^{x}}{y+x^{8}})
derivative of (x+y/(xy))
\frac{d}{dx}(\frac{x+y}{xy})
y^'=1-y/(20)
y^{\prime\:}=1-\frac{y}{20}
7x^2y^'=y^'+9xe-y
7x^{2}y^{\prime\:}=y^{\prime\:}+9xe-y
integral from 1 to infinity of 1/(x^2+x)
\int\:_{1}^{\infty\:}\frac{1}{x^{2}+x}dx
derivative of 2^xln^2(2)
\frac{d}{dx}(2^{x}\ln^{2}(2))
area 9x+11,7x+14,[23,13]
area\:9x+11,7x+14,[23,13]
(\partial)/(\partial y)(e^ysin(x))
\frac{\partial\:}{\partial\:y}(e^{y}\sin(x))
(d^2)/(dx^2)(x\sqrt[3]{x})
\frac{d^{2}}{dx^{2}}(x\sqrt[3]{x})
inverse oflaplace ((4s-18))/(s^2-6s+10)
inverselaplace\:\frac{(4s-18)}{s^{2}-6s+10}
integral of 20x
\int\:20xdx
integral of (x+1)/((2-x)^2)
\int\:\frac{x+1}{(2-x)^{2}}dx
integral from 0 to 4 of (e^{-2x}+1)
\int\:_{0}^{4}(e^{-2x}+1)dx
derivative of y^x
\frac{d}{dx}(y^{x})
derivative of f(x)=7x+6
derivative\:f(x)=7x+6
integral of 1/(2sqrt(tan(x)))
\int\:\frac{1}{2\sqrt{\tan(x)}}dx
inverse oflaplace (s^2+3s+5)/(s^3(s+2))
inverselaplace\:\frac{s^{2}+3s+5}{s^{3}(s+2)}
(dy)/(dx)=sqrt(x)
\frac{dy}{dx}=\sqrt{x}
sum from n=0 to infinity of 2/(n^2)
\sum\:_{n=0}^{\infty\:}\frac{2}{n^{2}}
integral from-4 to 2 of (x+4)
\int\:_{-4}^{2}(x+4)dx
area y^2=4x,y=x^2
area\:y^{2}=4x,y=x^{2}
tangent of 8x^2-2,\at x=-4
tangent\:8x^{2}-2,\at\:x=-4
tangent of x^4+2x^2+3,\at x=-2
tangent\:x^{4}+2x^{2}+3,\at\:x=-2
f(x)=4e^{2x^3}
f(x)=4e^{2x^{3}}
integral from-infinity to 0 of 1/(7-4x)
\int\:_{-\infty\:}^{0}\frac{1}{7-4x}dx
integral of x^2e^{-5x}
\int\:x^{2}e^{-5x}dx
(\partial}{\partial x}(\frac{y+1)/x)
\frac{\partial\:}{\partial\:x}(\frac{y+1}{x})
derivative of 3/((1-x^2))
\frac{d}{dx}(\frac{3}{(1-x)^{2}})
integral of (3x^5-6sqrt(x)+e^x-4/x)
\int\:(3x^{5}-6\sqrt{x}+e^{x}-\frac{4}{x})dx
(\partial)/(\partial x)(xcos(y)-ycos(x))
\frac{\partial\:}{\partial\:x}(x\cos(y)-y\cos(x))
derivative of g(x)=ln(xe^{-2x})
derivative\:g(x)=\ln(xe^{-2x})
integral of (x^4+10x^3)/(2x^2)
\int\:\frac{x^{4}+10x^{3}}{2x^{2}}dx
integral of 2(1-3x)^2
\int\:2(1-3x)^{2}dx
derivative of (x^3-2^2)
\frac{d}{dx}((x^{3}-2)^{2})
integral of 1/(e^{-x)+e^x}
\int\:\frac{1}{e^{-x}+e^{x}}dx
limit as t approaches 0+of 4/t-1/(e^t-1)
\lim\:_{t\to\:0+}(\frac{4}{t}-\frac{1}{e^{t}-1})
derivative of 2csc(xcot(x))
\frac{d}{dx}(2\csc(x)\cot(x))
tangent of y=2sqrt(x)+1,\at x= 1/4
tangent\:y=2\sqrt{x}+1,\at\:x=\frac{1}{4}
inverse oflaplace (s^2)/((s-3)(s^2+5))
inverselaplace\:\frac{s^{2}}{(s-3)(s^{2}+5)}
sum from n=0 to infinity of (e^n)/(n^2)
\sum\:_{n=0}^{\infty\:}\frac{e^{n}}{n^{2}}
(\partial)/(\partial z)(2xz^3e^{y^2})
\frac{\partial\:}{\partial\:z}(2xz^{3}e^{y^{2}})
integral from 5 to 9 of x^2
\int\:_{5}^{9}x^{2}dx
area 5-x^2,17-7x
area\:5-x^{2},17-7x
integral of ct
\int\:ctdt
limit as x approaches pi of cos(x)
\lim\:_{x\to\:π}(\cos(x))
derivative of 2/((x+2)^2)
derivative\:\frac{2}{(x+2)^{2}}
integral of (4/x+2e^x-sin(x))
\int\:(\frac{4}{x}+2e^{x}-\sin(x))dx
tangent of y=2x^3-3x+1,(1,0)
tangent\:y=2x^{3}-3x+1,(1,0)
derivative of sqrt(x^2+6x+9)
derivative\:\sqrt{x^{2}+6x+9}
derivative of 4ln(9-5x^2)
derivative\:4\ln(9-5x^{2})
(x^2+1)dy=(x-4xy)dx
(x^{2}+1)dy=(x-4xy)dx
integral of 22tan^3(x)
\int\:22\tan^{3}(x)dx
integral of 1/(sqrt(1+e^x))
\int\:\frac{1}{\sqrt{1+e^{x}}}dx
integral of (e^x)/(e^x+8)
\int\:\frac{e^{x}}{e^{x}+8}dx
integral from 0 to 1 of 4/(sqrt(x)(1+x))
\int\:_{0}^{1}\frac{4}{\sqrt{x}(1+x)}dx
derivative of 7/(xln(x))
\frac{d}{dx}(\frac{7}{x\ln(x)})
(\partial)/(\partial y)(x^2+z^2)
\frac{\partial\:}{\partial\:y}(x^{2}+z^{2})
(\partial)/(\partial x)(a)
\frac{\partial\:}{\partial\:x}(a)
f(x)=(((x-3))/((x+2)))^2x=-1
f(x)=(\frac{(x-3)}{(x+2)})^{2}x=-1
integral of (e^x)/((e^x+1)^3)
\int\:\frac{e^{x}}{(e^{x}+1)^{3}}dx
y^'=ry(1-y/k)
y^{\prime\:}=ry(1-\frac{y}{k})
derivative of (x^3-2^5)
\frac{d}{dx}((x^{3}-2)^{5})
limit as x approaches 0 of x^{14}ln(x)
\lim\:_{x\to\:0}(x^{14}\ln(x))
derivative of e^{3/2 x}
\frac{d}{dx}(e^{\frac{3}{2}x})
derivative of 1/((x-5^2))
\frac{d}{dx}(\frac{1}{(x-5)^{2}})
integral of (te^ti-4e^{-2t}j+8te^{t^2}k)
\int\:(te^{t}i-4e^{-2t}j+8te^{t^{2}}k)dt
slope of (90,62536),(950,9000)
slope\:(90,62536),(950,9000)
(\partial)/(\partial x)(y^2(x+y)^{-2})
\frac{\partial\:}{\partial\:x}(y^{2}(x+y)^{-2})
11xy^'+y=132x
11xy^{\prime\:}+y=132x
integral of e^{-x}+2
\int\:e^{-x}+2dx
derivative of (9x/((x^2+81)^{3/2)})
\frac{d}{dx}(\frac{9x}{(x^{2}+81)^{\frac{3}{2}}})
derivative of ((x-1/(x+1))^3)
\frac{d}{dx}((\frac{x-1}{x+1})^{3})
integral of 5x^{15}e^{-x^8}
\int\:5x^{15}e^{-x^{8}}dx
integral of 1/(x(ln(x))^6)
\int\:\frac{1}{x(\ln(x))^{6}}dx
inverse oflaplace (4s)/((s+1)^2)
inverselaplace\:\frac{4s}{(s+1)^{2}}
derivative of 3x^2+e^2x+pi^2
\frac{d}{dx}(3x^{2}+e^{2}x+π^{2})
derivative of f(x)=x^8-9e^{3x}
derivative\:f(x)=x^{8}-9e^{3x}
integral from 0 to pi of cos(t)
\int\:_{0}^{π}\cos(t)dt
derivative of 2x^3-12x^2+18x
\frac{d}{dx}(2x^{3}-12x^{2}+18x)
limit as x approaches 3 of (-4)x
\lim\:_{x\to\:3}((-4)x)
(dx)/(dy)+800y=400
\frac{dx}{dy}+800y=400
derivative of (x-3(x^3-2))
\frac{d}{dx}((x-3)(x^{3}-2))
derivative of (ln(5x)^2)
\frac{d}{dx}((\ln(5x))^{2})
(\partial)/(\partial x)((90-x)^2*(x+2))
\frac{\partial\:}{\partial\:x}((90-x)^{2}\cdot\:(x+2))
integral of 3/(2xsqrt(9x^2-1))
\int\:\frac{3}{2x\sqrt{9x^{2}-1}}dx
derivative of f(x)=14^x
derivative\:f(x)=14^{x}
integral from 1 to 4 of 1/(x-4)
\int\:_{1}^{4}\frac{1}{x-4}dx
laplacetransform 4t-10
laplacetransform\:4t-10
integral of 1/(xsqrt(x^2-4))
\int\:\frac{1}{x\sqrt{x^{2}-4}}dx
integral of (\sqrt[3]{x^2})
\int\:(\sqrt[3]{x^{2}})dx
derivative of ln((7x^2+8x+5)/(8x^3-1))
derivative\:\ln(\frac{7x^{2}+8x+5}{8x^{3}-1})
derivative of f(x)=sqrt(x)e^x\at x
derivative\:f(x)=\sqrt{x}e^{x}\at\:x
integral of \sqrt[8]{x}+\sqrt[9]{x}
\int\:\sqrt[8]{x}+\sqrt[9]{x}dx
derivative of f(x)=(t^6+1)^{500}
derivative\:f(x)=(t^{6}+1)^{500}
tangent of-x/((25-x^2)^{1/2)}
tangent\:-\frac{x}{(25-x^{2})^{\frac{1}{2}}}
1
..
366
367
368
369
370
..
1823