You can see your coupon in the
user page
Go To QuillBot
Upgrade to Pro
Continue to site
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Solutions
Integral Calculator
Derivative Calculator
Algebra Calculator
Matrix Calculator
More...
Graphing
Line Graph Calculator
Exponential Graph Calculator
Quadratic Graph Calculator
Sine Graph Calculator
More...
Calculators
BMI Calculator
Compound Interest Calculator
Percentage Calculator
Acceleration Calculator
More...
Geometry
Pythagorean Theorem Calculator
Circle Area Calculator
Isosceles Triangle Calculator
Triangles Calculator
More...
Tools
Notebook
Groups
Cheat Sheets
Worksheets
Study Guides
Practice
Verify Solution
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Upgrade
×
Symbolab for Chrome
Snip & solve on any website
Add to Chrome
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Calculations
Graphs
Popular Calculus Problems
limit as x approaches 0 of (7x^2-4x)/x
\lim\:_{x\to\:0}(\frac{7x^{2}-4x}{x})
d/(dt)(asin(t))
\frac{d}{dt}(a\sin(t))
laplacetransform e^2tcos(2t)
laplacetransform\:e^{2}t\cos(2t)
integral of 6/7 x^{-1/7}
\int\:\frac{6}{7}x^{-\frac{1}{7}}dx
limit as x approaches 3-of (x-3)^{-1}
\lim\:_{x\to\:3-}((x-3)^{-1})
(\partial)/(\partial y)(ln(10x^2-7y^2))
\frac{\partial\:}{\partial\:y}(\ln(10x^{2}-7y^{2}))
tangent of 2/(3\sqrt[3]{x)}
tangent\:\frac{2}{3\sqrt[3]{x}}
derivative of f(x)=(4-3x-x^2)/(x^2-1)
derivative\:f(x)=\frac{4-3x-x^{2}}{x^{2}-1}
integral of 10arcsin(x)
\int\:10\arcsin(x)dx
limit as x approaches-2 of (x+1)(x+3)
\lim\:_{x\to\:-2}((x+1)(x+3))
derivative of x^{(2/x)}
derivative\:x^{(\frac{2}{x})}
derivative of y=3x^2+12x+6
derivative\:y=3x^{2}+12x+6
y^{''}+4y^'+4y=8x^2
y^{\prime\:\prime\:}+4y^{\prime\:}+4y=8x^{2}
derivative of xe^xy
\frac{d}{dx}(xe^{x}y)
(d^3)/(dx^3)(cos(x)-sin(x))
\frac{d^{3}}{dx^{3}}(\cos(x)-\sin(x))
integral of 6/(x(x+2))
\int\:\frac{6}{x(x+2)}dx
limit as x approaches 3+of (|x-2|)/(x-2)
\lim\:_{x\to\:3+}(\frac{\left|x-2\right|}{x-2})
(\partial)/(\partial x)(sqrt(56x^2-8y^2-16x-31)+1-8x)
\frac{\partial\:}{\partial\:x}(\sqrt{56x^{2}-8y^{2}-16x-31}+1-8x)
f(x)=1+x
f(x)=1+x
integral of 1/(x^{1+c)}
\int\:\frac{1}{x^{1+c}}dx
integral of (-5x^2)/(x^4-1)
\int\:\frac{-5x^{2}}{x^{4}-1}dx
(\partial)/(\partial t)(cos^2(t))
\frac{\partial\:}{\partial\:t}(\cos^{2}(t))
limit as x approaches 0-of 2x+c
\lim\:_{x\to\:0-}(2x+c)
(dy)/(dx)=(x^2-1)/(y^2)
\frac{dy}{dx}=\frac{x^{2}-1}{y^{2}}
y^{'''}+4y^{''}-5y^'=0
y^{\prime\:\prime\:\prime\:}+4y^{\prime\:\prime\:}-5y^{\prime\:}=0
integral from 0 to 8 of (8x-x^2)
\int\:_{0}^{8}(8x-x^{2})dx
d/(dy)(e^{2x+y})
\frac{d}{dy}(e^{2x+y})
taylor f(x)=arctan(x)
taylor\:f(x)=\arctan(x)
derivative of x^2*e^{-4x}
\frac{d}{dx}(x^{2}\cdot\:e^{-4x})
derivative of (x-3sqrt(x))
\frac{d}{dx}((x-3)\sqrt{x})
integral of (ln(z))/(z^2)
\int\:\frac{\ln(z)}{z^{2}}dz
integral from-1 to 3 of (4x^2-7)/(2x+3)
\int\:_{-1}^{3}\frac{4x^{2}-7}{2x+3}dx
derivative of In
\frac{d}{dx}(In)
(dy)/(dx)=12x^3y
\frac{dy}{dx}=12x^{3}y
integral of (e^x+1)(e^x+x)
\int\:(e^{x}+1)(e^{x}+x)dx
derivative of x^4(2x-5)^6
derivative\:x^{4}(2x-5)^{6}
y^{''}+40y^'+625y=0
y^{\prime\:\prime\:}+40y^{\prime\:}+625y=0
derivative of sqrt((s^2+1)/(s^2+4))
derivative\:\sqrt{\frac{s^{2}+1}{s^{2}+4}}
integral from 0 to 1 of (17)/(x^5)
\int\:_{0}^{1}\frac{17}{x^{5}}dx
integral of xsqrt(x^2+2x+2)
\int\:x\sqrt{x^{2}+2x+2}dx
integral of xsin(-2x)
\int\:x\sin(-2x)dx
9y^{''}+24y^'+16y=0
9y^{\prime\:\prime\:}+24y^{\prime\:}+16y=0
(1/(1+x^2))^'
(\frac{1}{1+x^{2}})^{\prime\:}
integral from-1 to 5 of 3x^2+6x
\int\:_{-1}^{5}3x^{2}+6xdx
tangent of y=4x^3-4x,(-1,0)
tangent\:y=4x^{3}-4x,(-1,0)
limit as x approaches-2 of-3
\lim\:_{x\to\:-2}(-3)
integral from 0 to 1 of (1/(x^2))
\int\:_{0}^{1}(\frac{1}{x^{2}})dx
integral of cot^3(x/2)csc^2(x/2)
\int\:\cot^{3}(\frac{x}{2})\csc^{2}(\frac{x}{2})dx
derivative of ((x^2-2x^3)/(5x))
\frac{d}{dx}(\frac{(x^{2}-2x)^{3}}{5x})
integral of 8x^3e^{4x}
\int\:8x^{3}e^{4x}dx
tangent of f(x)=-8x^2-7x,\at x=-4
tangent\:f(x)=-8x^{2}-7x,\at\:x=-4
integral of (x^2-3x+12)/((x^2-4x+11)^2)
\int\:\frac{x^{2}-3x+12}{(x^{2}-4x+11)^{2}}dx
derivative of 1/(x^3-2/(x^2))
\frac{d}{dx}(\frac{1}{x^{3}}-\frac{2}{x^{2}})
derivative of (x^4+7x^2-3)^4
derivative\:(x^{4}+7x^{2}-3)^{4}
tangent of f(x)= 5/(x^2),\at x=1
tangent\:f(x)=\frac{5}{x^{2}},\at\:x=1
integral of (x-1)/(x^2+3x+2)
\int\:\frac{x-1}{x^{2}+3x+2}dx
(dy)/(dx)=(3y)^{1/2}e^{x+10}
\frac{dy}{dx}=(3y)^{\frac{1}{2}}e^{x+10}
integral from-1 to 1 of (x^3-9x)
\int\:_{-1}^{1}(x^{3}-9x)dx
limit as x approaches 0 of 1/x sin(x/3)
\lim\:_{x\to\:0}(\frac{1}{x}\sin(\frac{x}{3}))
(dy)/(dx)+7y=5
\frac{dy}{dx}+7y=5
derivative of-2x^2(x+4)
derivative\:-2x^{2}(x+4)
(\partial)/(\partial x)(4(xy)^2)
\frac{\partial\:}{\partial\:x}(4(xy)^{2})
derivative of (1/(x^2-9/(x^4))(x+7x^3))
\frac{d}{dx}((\frac{1}{x^{2}}-\frac{9}{x^{4}})(x+7x^{3}))
integral from-1 to 1 of x^2-2x+3
\int\:_{-1}^{1}x^{2}-2x+3dx
y=(2y^4+2x)(dy)/(dx)
y=(2y^{4}+2x)\frac{dy}{dx}
integral from 0 to pi/4 of 1/(cos(x))
\int\:_{0}^{\frac{π}{4}}\frac{1}{\cos(x)}dx
(\partial)/(\partial x)(cos(x^3))
\frac{\partial\:}{\partial\:x}(\cos(x^{3}))
(\partial)/(\partial x)(xe^y-1)
\frac{\partial\:}{\partial\:x}(xe^{y}-1)
slope of x^2+y^2=27
slope\:x^{2}+y^{2}=27
integral from 1 to x of (e^{-3t})/t
\int\:_{1}^{x}\frac{e^{-3t}}{t}dt
area 3x^2,(5,75)
area\:3x^{2},(5,75)
integral of (2-3sin(2x))/(cos(2x))
\int\:\frac{2-3\sin(2x)}{\cos(2x)}dx
integral of 4/(x-5)
\int\:\frac{4}{x-5}dx
(\partial)/(\partial x)(((2x-y))/(2x+y))
\frac{\partial\:}{\partial\:x}(\frac{(2x-y)}{2x+y})
(dy)/(dx)+y/x =8x^7y^2
\frac{dy}{dx}+\frac{y}{x}=8x^{7}y^{2}
(\partial)/(\partial x)(4y-4x^3)
\frac{\partial\:}{\partial\:x}(4y-4x^{3})
slope of (1.5)(-1.7)
slope\:(1.5)(-1.7)
integral of 5x^2-6x
\int\:5x^{2}-6xdx
(dx)/(dt)= 6/(t+4)
\frac{dx}{dt}=\frac{6}{t+4}
integral from-1 to 2 of (x+2)-x^2
\int\:_{-1}^{2}(x+2)-x^{2}dx
limit as x approaches 30 of ((sin(x)))/x
\lim\:_{x\to\:30}(\frac{(\sin(x))}{x})
integral from 0 to 1 of 1/(x^4)
\int\:_{0}^{1}\frac{1}{x^{4}}dx
derivative of (2x^2+8x+2/(sqrt(x)))
\frac{d}{dx}(\frac{2x^{2}+8x+2}{\sqrt{x}})
(dy)/(dx)=2-sqrt(2x-y+3)
\frac{dy}{dx}=2-\sqrt{2x-y+3}
(\partial)/(\partial x)(x^3*y^2)
\frac{\partial\:}{\partial\:x}(x^{3}\cdot\:y^{2})
integral from 1 to 0 of (-9sqrt(x))
\int\:_{1}^{0}(-9\sqrt{x})dx
(\partial)/(\partial t)(ln(x+2ct))
\frac{\partial\:}{\partial\:t}(\ln(x+2ct))
integral from-1 to 2 of |2x-3|
\int\:_{-1}^{2}\left|2x-3\right|dx
y^{''}+36y=0
y^{\prime\:\prime\:}+36y=0
integral of (cos(x)sin^2(x))
\int\:(\cos(x)\sin^{2}(x))dx
derivative of (2x^2-1/(x^2-3))
\frac{d}{dx}(\frac{2x^{2}-1}{x^{2}-3})
integral of 20x^3+12x^2+4
\int\:20x^{3}+12x^{2}+4dx
(\partial)/(\partial x)(y^2x+y)
\frac{\partial\:}{\partial\:x}(y^{2}x+y)
(dy)/(dx)+y^3x+5y=0
\frac{dy}{dx}+y^{3}x+5y=0
6x((dy)/(dx))=2xe^x-6y+6x^2
6x(\frac{dy}{dx})=2xe^{x}-6y+6x^{2}
integral of (sin(6e^{-5x}))/(e^{5x)}
\int\:\frac{\sin(6e^{-5x})}{e^{5x}}dx
sum from n=1 to infinity of n^4(1+n^5)^2
\sum\:_{n=1}^{\infty\:}n^{4}(1+n^{5})^{2}
derivative of f(x)= 3/(x+3)
derivative\:f(x)=\frac{3}{x+3}
integral from 0 to 3 of-x^2+9
\int\:_{0}^{3}-x^{2}+9dx
y^'=((y^2-1))/(2x),y(1)=-2
y^{\prime\:}=\frac{(y^{2}-1)}{2x},y(1)=-2
1
..
370
371
372
373
374
..
1823